

International Journal of Modern Engineering and Research Technology

Volume 4 | Issue 4 | October 2017
14

AAABSTRACTBSTRACTBSTRACT

Hive is disseminated data warehouse

software. With the help of hive we can

perform query processing and data analysis

task. Hive is popular because it supports a

bulk of the SQL operations in relational

database management systems. To improve

performance of database systems join has

been the focus of several query optimization

techniques. As a result the aim of this work is

in two folds: Firstly we implement Two-way

join technique and integrated in Hive and

secondly performance is estimated, after

perform join operation. we run relevant test

queries on datasets generated using the

industry standard benchmark, TPC-H. Our

results indicate significant performance gain

over highly selective queries.

Keywords:—Big Data, Hive, two way Join

Operation

I. II. II. INTRODUCTIONNTRODUCTIONNTRODUCTION

Begning of Web 2.0, the various roles given to

the users and to the web based application went

through a high revolution. The passive view of

the same shows that only users are the content

creator. The facilities provided by the internet

to the end users has dumped data from various

sites like portals, blogs, social media and others,

this has increased the load on the servers who

was already overloaded with massive data. This

change has raised the need of innovative

solutions to store massive amount of data and

which could also support querying over it. The

raw data is queried to extract the meaningful

information from it. This opens new

opportunity for development of new algorithms,

tools, and services to process queries over this

massive amount of data in a sensible time slot.

With the increase of amount of data dealt with

in new and emerging applications, innovative

solutions are required to not only store this

massive of data, but also to process it

efficiently. Hive [1] is a data warehouse

solution for storing and processing such data is

stored in a distributed system, Hadoop [2]. A

programming model, called mapreduce [3],

built on top of Hadoop system enables it to

stream the data at a high bandwidth and

perform massive manipulation of data. Join is

an expensive operation in databases, which

depending on the predicate, data, etc., allows

information from different relations to be

“joint”. It also provides more data analysis and

mining tasks important in the context of

business intelligence for finding interesting and

useful patterns in large amount of data.

Therefore, improving various join operations

can result in significant performance

improvement. In relational databases, efficient

join operations are supported through indexing

or external sort techniques, without which the

brute-force scan of the entire table is hopeless

for large data. This is more crucial in particular

when a small fraction of the tuples participate in

a joint operation. Two major factors that

influence the performance of join operations

which are index based of Hive includes very

high data volume and low index maintenance

Performance Optimization of Hive by TwoPerformance Optimization of Hive by TwoPerformance Optimization of Hive by Two---Way Join Way Join Way Join

Website: http://www.ijmert.org Email: editor.ijmert@gmail.com

Volume 4, Issue 4, October 2017 ISSN: 2348-8565 (Online)

International Journal of Modern

Engineering and Research Technology

Manoj Dwivedi
M. Tech. Research Scholar

Takshshila Institute of Engineering & Technology

Jabalpur (M.P.), [INDIA]

Email: manojdwivedi590@gmail.com

Deepak Agrawal
Head of the Department

Department of Computer Science and Engineering

Takshshila Institute of Engineering & Technology

Jabalpur (M.P.), [INDIA]

Email:deepakagrawal@takshshila.org

International Journal of Modern Engineering and Research Technology

Volume 4 | Issue 4 | October 2017
15

cost. Though Hive is expected to work well

with vast amount of data, indexing can further

optimize the performance by reducing the

amount of data accessed from the contributing

tables. Having infrequent updates, as a

characteristic of big data, makes the cost of

index maintenance of less importance or

affordable. Additionally, the index types

proposed and developed in Hive take up a

pretty small space.

II. HIVE II. HIVE II. HIVE

Hive is data warehouse software which is used

for facilitates querying and managing large data

sets residing in distributed storage. Hive

language almost look like SQL language called

HiveQL [4]. Hive is designed to enable easy

data summarization. Hive also allows

traditional map reduce programs to customize

mappers and reducers when it is inconvenient

or inefficient to execute the logic in HiveQL.

 Figure 1: Hive Component

The first component is shell; Shell is the

command line interface. It allows interactive

queries like My SQL shell connected to

database. Also supports web and JDBC clients

[5].Driver, compiler and execution engine take

the hiveql scripts and run in Hadoop

environment.

 The second component driver, which receives

the queries. This component implements the

notion of session handles and provides execute

and fetch APIs modeled on JDBC/ODBC

interfaces of the table and partition metadata

looked up from the meta store. The third

component in hive is Execution engine which

executes the execution plan created by the

compiler. The plan is a DAG of stages. The

execution engine manages the dependencies

between these different stages of the plan and

executes these stages on the appropriate system

components. The last component is meta store

that stores all the structure information of the

various table and partitions in the warehouse

including column and column type

information, the serializes and deserialize

necessary to read and write data and the

corresponding hdfs files where the data is

stored.

III. RIII. RIII. RELATEDELATEDELATED WWWORKORKORK

We will present a few optimization techniques

related to indexes in Hive.HIVE-1644 [6] is

the implementation of processing the WHERE

clause with the index. The new query replaces

the table with the index table and looks for the

address of the desired values. The relevant part

of the predicate is the part that can be

processed by the indexes, that is a conjunction

of the binary expressions. The re-written query

is compiled and the produced root tasks are

added to the original query root tasks. Then the

original query is executed over the

intermediate results produced from the re-

written query. All column references in HIVE-

1644 must refer to the same table (no joins or

sub-queries).

SELECT col_list

FROM tab_name

WHERE predicate;

and re-writes it into:

INSERT INTO intermediate

S E L E C T _ B U C K E T N A M E ,

_OFFSETS

FROM tab_index

Performance Optimization of Hive by Two-Way Join Operation over Big Data

Author(s): Manoj Dwivedi, Deepak Agrawal | TIET, Jabalpur

International Journal of Modern Engineering and Research Technology

Volume 4 | Issue 4 | October 2017
16

WHERE relevent_part_of_the_predicate;

Antony, S., Chakka, 2010[1] proposed

accelerates queries with GROUP BY clauses

here are a number of conditions to be met in

HIVE-1694: the FROM clause must have only

one table (no joins) in the query; there should

be only one COUNT (index_key) function in

the SELECT clause; and all column references

must be in the index key.

In another research, Wang et Al 2010 [7]

integrated indexing with a B+ tree structure

into map-reduce framework. In this work,

given a query, the index is accessed twice to

locate the start point and the end point in the

leaves. The nodes between these two positions

satisfy the query. Map jobs are generated and

attached to blocks of data covered between the

start point and the end point. Each map first

scans the index and then retrieves the records

using the offset. Gruenheid, work proposed

storing column-level meta-data in Hive tables

to benefit from during query execution [8].

Column-level statistics or more specifically,

histograms that exhibit value distribution

within a table provide more accurate

information than just the table size to estimate

the output size. A new table is added to Hive

meta-store that holds the number of distinct

values, number of null value, min and max

values and most frequent values as its fields. In

presence of column statistics, an index-based

join can determine whether it is an optimal

approach before execution.

IV. TIV. TIV. TOWOWOW---WWWAYAYAY JJJOINOINOIN APPROACHAPPROACHAPPROACH

Single tables are involved in existing indices in

Hive. A join index is a pre-computed access

structure that maintains pairs of identifiers of

tuples from two or more relations that would

match in case of a join in RDBMS. This

approach would be a suitable optimization

approach in Hive where tables are updated

infrequently. Index join concept is based on the

fact that is to keep unique identifiers of the

matched tuples in the same structure and cluster

them on either of the unique identifiers of both

tables. The current implementation of Hive

does not support the concept of primary keys

[9] which are considered the unique identifiers

of tuples in RDBMSs. The aim of my work is

to accelerate a two-way join query created in

HiveQL as shown below:

SELECT col_list

 FROM tab1 JOIN tab2

 ON (table1.col1 = table2.col1)

 [WHERE ...]

 [GROUP BY…];

In the above mentioned query “WHERE” and

“GROUP BY” clauses are optional. The same

queries can be applied for joining “n” number

of tables.

A. Design

When we execute simple query in Hive, it

reads the whole dataset even if we have use

„where „clause filter. This becomes a

bottleneck for running Map-Reduce jobs over a

huge table. We can overcome this problem by

using partitioning in Hive. By using automatic

partition method when the table is created. In

Hive‟s implementation of partitioning, data

within a table is split across various small

partitions. When the query is executed, only

the required partitions of the table are execute,

thereby minimizing the I/O and time required

by the query. Because when external table is

declared, default table path is changed to

specified location in hive metadata which

contains in meta store, but about partition,

nothing is changed, so, we must manually add

those metadata.

The proposed research work can be

demonstrated by the following:

 A Search for a JoinOperator is done by

optimizer. If this step is omitted we can

perform optimization for any query. Now

Performance Optimization of Hive by Two-Way Join Operation over Big Data

Author(s): Manoj Dwivedi, Deepak Agrawal | TIET, Jabalpur

International Journal of Modern Engineering and Research Technology

Volume 4 | Issue 4 | October 2017
17

query is examined by optimizer for a two-way

join. Further we get operator TableScan

Operator that points to the table that has to be

manipulated and verify that the table contain

an index and check for its validity. The index

is valid if it is compact index and it includes all

the partitions of the table. If all the condition

are fulfilled then the optimizer re-write the

query:

SELECT col_list

FROM index_table JOIN table2

ON (tab1.col1 = tab2.col1)

[WHERE]

[GROUP BY];

Figure: 2 Query Plan Generator Flow of Index-based

approach

Otherwise This flow ends which means query

is not executed successfully.

Any of the table (whichever that has the index)

is replaced by its corresponding index table.

This means that table must be removed from

every internal data structure in the operator

DAG and the new table must be added instead.

Hive query optimization is conforms by given

flow show in figure 2.

B. Results

We used the standard benchmark TPC-H

version 2.14.4 to generate data used in our

experiments [10]. we considered only the

supplier and nation tables.

C. Test Queries

selects.s_acctbal,s.s_name, s.s_suppkey from

supplier s

join nation n

on(s.s_nationkey=n.n_nationkey).

select s.s_acctbal,s.s_name,s.s_suppkey from

supplier s

join nation n

on(s.s_nationkey=n.n_nationkey) group by

s.s_acctbal,s.s_name,s.s_suppkey

where c.c_acctbal>1000.

Select s.s_acctbal,s.s_name,s.s_suppkey from

supplier s \

join nation

on(s.s_nationkey=n.n_nationkey) group by

s.s_acctbal,s.s_name,s.s_suppkey

Group By s.s_acctbal,s.s_name,s.s_suppkey.

Performance Optimization of Hive by Two-Way Join Operation over Big Data

Author(s): Manoj Dwivedi, Deepak Agrawal | TIET, Jabalpur

International Journal of Modern Engineering and Research Technology

Volume 4 | Issue 4 | October 2017
18

Table 1: Query1 Response Time without

Index Based Approach / with Index-Based

Approach

Table 2: Query1 Response time without

index based approach /with index-based

approach

Table 3: Query1 Response Time without

Index based Approach / with Index-Based

Approach

Figure 3: Query1 response time without index based /

with index-based approach on single node setup

Figure 4: Query2 response time without index based /

with index-based approach on single node setup

Table 3: Query1 Response time without index based

approach /with index-based approach

 Without Index Approach

Response Time(s)
With Index Approach

Response Time(s)

Data

Size

1 GB 3 GB 5 GB 1 GB 3 GB 5 GB

51.22 146.11 200.54 34.11 100.12 143.23
52.56 142.25 201.56 32.34 100.34 143.22

55.78 142.34 203.54 31.67 101.23 145.32

52.44 141.26 203.55 30.00 101.45 142.23

52.11 140.99 201.45 30.67 101.34 142.23

Avg. 52.82 142.59 202.128 31.758 100.896 143.246

 With index approach

response time(s)
Without index approach

response time(s)

Data

Size

1 GB 3 GB 5 GB 1 GB 3 GB 5 GB

 54.22 141.11 193.54 32.11 110.12 133.23

 53.56 142.25 191.56 32.34 110.34 133.22

 53.78 142.34 191.54 31.67 111.23 135.32

 52.44 141.26 191.55 31.02 111.45 132.23

 52.11 140.99 191.45 31.23 111.34 132.23

Avg. 53.11 141.59 191.928 31.674 110.896 133.246

 Without index approach

Response time(s)
With index approach

Response time(s)

D a t a

Size

1 GB 3 GB 5 GB 1 GB 3 GB 5 GB

 50.60 147.66 265.00 32.11 101.56 210.54

 49.81 146.87 265.78 32.45 101.43 211.34

 49.43 150.98 265.65 32.12 101.24 210.11

 49.76 147.01 265.78 32.43 101.23 210.45

 49.76 147.00 265.71 32.10 101.45 210.23

Avg. 49.87 147.90 265.58 32.24 101.38 210.53

Performance Optimization of Hive by Two-Way Join Operation over Big Data

Author(s): Manoj Dwivedi, Deepak Agrawal | TIET, Jabalpur

International Journal of Modern Engineering and Research Technology

Volume 4 | Issue 4 | October 2017
19

V. CV. CV. CONCLUSIONONCLUSIONONCLUSION ANDANDAND FFFUTUREUTUREUTURE WWWORKORKORK

The expensive operation in RDBMS, join has

been the focus of many query optimization

techniques to improve performance of database

systems. In partitioning, we create a partition

for each unique value of the column. We

investigate such techniques for join operations

in Hive and develop an index-based join

algorithm for queries in HiveQL. Indexes have

been around for long time and the benefit of

using them is obvious Though index size

depends on the data distribution and the number

of attributes for indexing, our experiments

showed the Hive index space utilization is

reasonable. With respect to accessing the index,

current Hive indexes do not provide an instant

access to values, which undoubtedly comes

with heavy space overhead. What they offer

instead is, scanning a huge amount of data is

replaced with scanning a drastically small set of

it that holds the desired values. Hive index

maintenance cost is noticeably low, considering

the infrequent updates and batch-mode data

insertion as the characteristics of big data. The

indexing technique in Hive is rather new and

the progress has been limited to current index

structure and also the query life cycle. As future

work, first we plan to work on hash based

indexing using bucket level because bucket is

smallest data model in hive.

REFERENCES:

[1] Antony, S., Chakka, P., Jain, N., J.,

Liu, Murthy, R., Sarma, J. S.,

Thusoo, A., Zhang, N “Hive – A

Petabyte Scale Data Warehouse

Using Hadoop,” IEEE 26th Intl.

Conf. Data Engineering (ICDE),

Long Beach, CA, 2010, pp. 996 –

1005.

[2] Apache Hadoop [Online]. Available:

http://hadoop.apache.org

[3] Dean, J., Ghemawat, S. “MapReduce:

Simplified Data Processing on Large

Clusters,” Mag. Commun. ACM

50thanniversary, vol. 51, issue 1,

2008, pp.107-113

[4] h t tp : / /www .hadooptpoin t .com/

introduction-hive

[5] Yue Liu1, 6, 7, Songlin Hu1

“DGFIndex for Smart Grid:

Enhancing Hive with a Cost-Effective

Multidimensional Range Index” 40th

International Conference on Very

Large Data Bases, September 1st -

5th 2014, Hangzhou, China.

[6] ANTLR [Online]. Available: http://

www.antlr.org/

[7] An, M., Wang, W., Wang, Y., “Using

In d ex i n t h e Map Red u ce

Framework,”, 12th Intl. Asia Pacific

Web Conf. (APWEB),Beijing, China,

2010, pp. 52-58

[8] Dean, J., Ghemawat, S. “MapReduce:

Simplified DataProcessing on Large

Clusters,” Mag. Commun. ACM 50th

anniversary, vol. 51, issue 1, 2008,

pp.107-113.

[9] Capriolo, E., Rutherglen, J.,

Wampler, D. Programming Hive:

Data Warehouse and Query Language

for Hadoop, 1st ed, O'Reilly Media,

2012

[10] TPC-H[Online]. http://www.tpc.org/

tpch/

[11] HIVE 1694[Online]. Available:

https://issues.apache.org/jira/browse/

HIVE-1694

[12] Hive index design doc [Online].

Available: https://cwiki.apache.org/

confluence/display/Hive/IndexDe

[13] Hive JIRA [Online]. Available:

https://issues.apache.org/jira/browse/

Performance Optimization of Hive by Two-Way Join Operation over Big Data

Author(s): Manoj Dwivedi, Deepak Agrawal | TIET, Jabalpur

International Journal of Modern Engineering and Research Technology

Volume 4 | Issue 4 | October 2017
20

HIVE

[14] HIVE-1644 [Online]. Available:

https://issues.apache.org/jira/browse/

HIVE-164

[15] N. Jain, L. Tang, “Join strategies in

Hive”, Facebook, Rep. Hadoop

summit 2011, 2011 [Online].

[16] Li, Z., Ross, K. A. “Fast joins using

join indices”, in The International

Journal on Very Large Data Bases,

vol. 8, issue 1, 1999, pp.1–24

[17] Lou, W., Ren, K., Wang, C., Wang,

Q. Privacy-Preserving Public

Auditing for Storage Security in

Cloud Computing, Proc. 30th IEEE

I n t ' l C o n f . C o m p u t e r

Communications (INFOCOM 10),

IEEE Press, San Diego, CA, 2010,

pp. 525–533.

[18] S. Madden: “From Databases to Big

Data,” IEEE Internet Computer.,

vol.16, issue 3, pp. 4-6, May-June,

2012

[19] MapReduce Tutorial [Online].

A v a i l a b l e (d a t e) : h t t p : / /

hadoop.apache.org/docs/mapreduce/

r0.22.0/mapred_tutorial.html

[20] MongoDB[Online]. Available: http://

www.mongodb.org/

[21] Neo4j[Online]. Available(write date):

http://www.neo4j.org/

[22] Gruenheid , A. , Mark , L. ,

Omnecinski, E. “Query Optimization

using column statistics in Hive,” in

Proc. 15th Symp. Intl. Database

Engineering & Applications

(IDEAS), Lisbon, Portugal, 2011, pp.

97-105, 2011

[23] Dean, J., Ghemawat, S. “MapReduce:

Simplified Data Processing on Large

Clusters,” Mag. Commun. ACM 50th

anniversary, vol. 51, issue 1, 2008,

pp.107-113

[24] Eaton, C., Deroos, D., Deutsch, T.,

Lapis , G. , Zikopoulos , P .

Understanding Big data: Analytics for

Enterprise Class Hadoop and

Streaming Data, 1st ed, McGraw,

2011

[25] Garcia-Molina, H., Ullman, J.,

Widom, J. Database Systems: The

Complete Book, 1st ed, Upper Saddle

River, NJ, Prentice Hall Inc., 2002

[26] Gilbert, S., Lynch, N. A. “Brewer's

Conjecture and the Feasibility of

Consistent, Available, Partition-

Tolerant Web Services”, in Newslett.

ACM SIGACT, vol. 33, issue 2, pp.

51-59, June 2002

[27] Grance, T., Mell, P. “The NIST

Definition of Cloud Computing,” -

NIST. Gaithersburg, MD, Rep.

Recommendations of the National

Institute of Standards and 107

Technology, 2011

[28] Yin Huai, Ashutosh Chouhan “Major

Technical Advancements in Apache

Hive” SIGMOD, June 2014

[29] H. V. Jagadish : “Big Data & Science

Myths and Reality” Science Direct

June 2015.

* * * * *

Performance Optimization of Hive by Two-Way Join Operation over Big Data

Author(s): Manoj Dwivedi, Deepak Agrawal | TIET, Jabalpur

