

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
123

AAABSTRACTBSTRACTBSTRACT

Be Bugging/Mutation Testing is a way of

determining the effectiveness of testing. That

is, it is a technique that may be used to

determine the number of remaining bugs in a

software artifact after testing/review. Mutation

Testing is a fault-based testing technique

which provides a testing criterion called the

“mutation adequacy score”. The mutation

adequacy score can be used to measure the

effectiveness of a test set in terms of its ability

to detect faults

Keywords :— Mutation testing, Decision

Mutation, Statement Mutation, Operators

I. II. II. INTRODUCTIONNTRODUCTIONNTRODUCTION

Mutation testing, proposed in 1978 by

Richard A. DeMillo and his colleagues2 is

an effective technique: if a test suite finds

all the artificial errors inserted in the

mutants and finds no fault in the original,

it’s likely that the program under test is free

of them. Obviously, the validity of this

affirmation depends on the nature of the

artificial fault: some of them are better than

others. This testing technique has been

used in the research arena to check the

effectiveness of new proposed testing

techniques, but it hasn’t been used until

recently in industry due to its costs and the

lack of knowledge and industrial tools.

Mutation Testing has been increasingly and

widely studied since it was first proposed in

the 1970s.There has been much research

work on the various kinds of techniques

seeking to turn Mutation Testing into a

practical testing approach. It is a type of

White Box Testing which is mainly used for

Unit Testing. The changes in mutant

program are kept extremely small, so it

does not affect the overall objective of the

program. The goal of Mutation Testing is to

assess the quality of the test cases which

should be robust enough to fail mutant

code. This method is also called as Fault

based testing strategy as it involves creating

a fault in the program.

II. MII. MII. MUTATIONUTATIONUTATION TTTESTINGESTINGESTING TTTYPESYPESYPES

Mutation testing can be broadly classified

into three – Value mutation, decision

mutation and statement mutation. In value

mutation, value of constants or parameters

is changed. For example, value is changed

to one larger or one smaller in loops,

Initialization value is changed.

Decision mutation – This helps to modify

program code so that slip errors are

reflected. For example, > a is changed to

<a.

Statement mutation – In this type of

testing, developer cuts and paste codes

which might result in deletion of some

Bebugging: An Approach for Mutation TestingBebugging: An Approach for Mutation TestingBebugging: An Approach for Mutation Testing

Website: http://www.ijmert.org Email: editor.ijmert@gmail.com

Volume 6, Issue 2, April 2019 ISSN: 2348-8565 (Online)

International Journal of Modern

Engineering and Research Technology

Venkateshwara Reddy Mudiyala
Research Scholar

Master of Computer Science

University of New Haven.
West Haven, (CT) [UNITED STATE]

Email: Vmudi1@unh.newhaven.edu

Henry J Nowik
Professor

Department of ECECS,
University of New Haven.

West Haven, (CT) [UNITED STATE]

Email: HNowik@newhaven.edu

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
124

statements of lines. This may also involve

swapping the order of line of code. A line

of code can be deleted/duplicated. Order of

statements can also be changed

III. MIII. MIII. MUTATIONUTATIONUTATION OOOPERATORSPERATORSPERATORS

The operators that are applied on the

original program to generate the mutants

are known as Mutation operators. The

Mutation operators can be broadly

classified into

1. Traditional mutation operators

2. Class mutation operators

1. Traditional Mutation Operators

The traditional mutation operators are

developed for procedural programming

language. Though application of these

operators generates many mutants, all of

them may not be effective as they tend to

overlap. The following are the traditional

mutation operators.

i. Arithmetic Operators

ii. Relational Operators

iii. Conditional Operators

iv. Logical Operators

v. Assignment Operators

vi. Shift Operators

The mutants are generated by replacing,

inserting or deleting the mutant operators.

2. Class Mutation Operators

These are used for generating mutants to

test object -oriented and integration issues.

(i) Encapsulation: Mutants are formed by

application of operators that modifies,

deletes or insert the access level for

instance variables and methods.

(ii) Inheritance: The mutants are produced

by application of operators that deletes a

hiding variable to check whether that

variable is defined and that its accessibility

in class and subclasses are correct.

(iii) Polymorphism: The mutants are

created by the polymorphism operators to

check if the methods having the same name

and number of parameters are accessible in

a right manner or not.

(iv) Mutation Operators/mutators: A

mutator is the operation applied to the

original code. Basic examples include

changing a '>' operator by an '<', replacing

'and' by 'or' operators, and substituting other

mathematical operators for instance.

(v) Mutants: A mutant is the result of

applying the mutator to an entity (in Java

this is typically a class). A mutant is thus

the modified version of the class, that will

be used during the execution of the test

suite.

(vi) Mutations killed/survived: When

executing the test suite against mutated

code, there are 2 possible outcomes for each

mutant: the mutant is either killed, or it has

survived. A killed mutant means that there

was at least 1 test that failed as the result of

the mutation. A survived mutant means that

our test suite didn’t catch the mutation and

should thus be improved.

(vii) Equivalent Mutations: Things are not

always white or black. Zebras do exist! On

the mutation testing subject, not all

mutations are interesting, because some will

result in the exact same behavior. Those are

called equivalent mutations. Equivalent

mutations often reveal redundant code that

may be deleted/simplified.

IV. EIV. EIV. EXECUTIONXECUTIONXECUTION OFOFOF MMMUTATIONUTATIONUTATION TTTESTINGESTINGESTING

Bebugging: An Approach for Mutation Testing

Author(s): Venkateshwara Reddy Mudiyala, Henry J Nowik | University of New Haven (US)

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
125

How the mutation testing will take place

explained below step by step

1. Faults are introduced into the source

code of the program by creating many

versions called mutants. Each mutant

should contain a single fault, and the

goal is to cause the mutant version to

fai l which demonstrates the

effectiveness of the test cases.

2. Test cases are applied to the original

program and to the mutant program. A

Test Case should be adequate, and it is

tweaked to detect faults in a program.

3. Compare the results of an original and

mutant program.

4. If the original program and mutant

programs generate the different

output, then that the mutant is killed

by the test case. Hence the test case is

good enough to detect the change

between the original and the mutant

program.

5. If the original program and mutant

program generate the same output,

Mutant is kept alive. In such cases,

more effective test cases need to be

created that kill all mutants.

There are several Mutation testing tools that

are available. Jumble and Insure++ are the

most common among that.

V. MV. MV. MUTATIONUTATIONUTATION TTTESTINGESTINGESTING TTTOOLSOOLSOOLS

5.1 Jumble

1. Jumble is a simple non-graphic open

source tool. It converts the text files

into version that enables studying the

format of the file.

2. It directly operates at a source code

level and speed up the Mutation

testing process. The limited sets of

Mutation operators supported by

Jumble are: Conditional, Binary

Arithmetic Operations, Increments,

Inline Constants, Class Pool

Constants, Return Values, and Switch

Statements

5.2 Insure++

1. It is a commercial automatic testing

tool for C and C++ that makes use of

Mutation analysis technique.

2. Instead of generating all possible

mutants, insure++ focuses on the

“potential equivalent mutants”. The

motivation behind this idea is that if

any test case can kill the “potential

equivalent mutants”, it might also find

the faults in the original program.

VI. CVI. CVI. CHALLENGESHALLENGESHALLENGES OFOFOF MMMUTATIONUTATIONUTATION TTTESTINGESTINGESTING

Mutation testing can effectively assess the

adequacy and quality of a test set, but it

also has certain challenges as below

1. Mutation testing has a high

computational cost of executing the

enormous number of mutants against a

test set.

2. The human oracle problem, which

refers to the process of checking the

output of each test case against the

output of original program, can be a

serious problem as mutation testing

can lead to an increase in the number

of test case

VII. AVII. AVII. ADVANTAGESDVANTAGESDVANTAGES

 It is a powerful approach to attain

high coverage of the source program.

 T h i s t e s t i n g i s c a p a b l e

comprehensively testing the mutant

program.

 Mutation testing brings a good level

of error detection to the software

developer.

Bebugging: An Approach for Mutation Testing

Author(s): Venkateshwara Reddy Mudiyala, Henry J Nowik | University of New Haven (US)

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
126

 This method uncovers ambiguities in

the source code and has the capacity

to detect all the faults in the program.

 Customers are benefited from this

testing by getting a most reliable and

stable system.

VIII. DVIII. DVIII. DISADVANTAGESISADVANTAGESISADVANTAGES

 Extremely costly and time-consuming

since there are many mutant programs

that need to be generated.

 Since its time consuming, it's fair to

say that this testing cannot be done

without an automation tool.

 Each mutation will have the same

number of test cases than that of the

original program.

 So, many mutant programs may need

to be tested against the original test

suite.

 As this method involves source code

changes, it is not at all applicable for

Black Box Testing.

IX. CIX. CIX. CONCLUSIONONCLUSIONONCLUSION

It is the most comprehensive technique to

test a program. This is the method which

checks for the effectiveness and accuracy of

a testing program to detect the faults or

errors in the system.

REFERENCES:

[1] Mutation Testing for the New Century

Editors: Wong, W. Eric (Ed.)

[2] R. T. Alexander, J. M. Bieman, S.

Ghosh, and B. Ji, “Mutation of Java

Objects,” in Proceedings of the 13th

International Symposium on Software

Reliability Engineering (ISSRE’02).

Annapolis, Maryland: IEEE Computer

Society, 12-15 November 2002, pp.

341–351.

[3] 3.B. Baudry, F. Fleurey, J.-M.

Jezequel, and Y. Le Traon, “Genes

and Bacteria for Automatic Test Cases

Optimizat ion in the .NET

Environment,” in Proceedings of the

13th International Symposium on

Software Reliability Engineering

(ISSRE’02), Annapolis, Maryland, 12

- 15 November 2002, pp. 195–206.

[4] B. Bogacki and B. Walter,

“Evaluation of Test Code Quality with

Aspect-Oriented Mutations,” in

Proceedings of the 7th International

Conference on eXtreme Programming

and Agile Processes in Software

Engineering (XP’06), ser. LNCS, vol.

4044, 2006, Oulu, 17-22 June 2006,

pp. 202–204.

[5] J. S. Bradbury, J. R. Cordy, and J.

Dingel, “Mutation Operators for

Concurrent Java (J2SE 5.0),” in

Proceedings of the 2nd Workshop on

Mutation Analysis (MUTATION’06).

Raleigh, North Carolina: IEEE

Computer Society, November 2006,

pp. 83–92.

[6] R.A. DeMillo, R.J. Lipton, and F.G.

Sayward, “Hints on Test Data

Selection: Help for the Practicing

Programmer,” Computer, vol. 11, no.

4, 1978, pp. 34–4

[7] M. Polo, M. Piattini, and I. García-

Rodríguez, “Decreasing the Cost of

Mutation Testing with Second-Order

Mutants ,” Software Test ing

Verification Reliability, vol. 19, no. 2,

2009, pp. 111–131.

[8] B. K. Aichernig, “Mutation Testing in

the Refinement Calculus,” Formal

Aspects of Computing, vol. 15, no. 2-

3, pp. 280–295, November 2003.

Bebugging: An Approach for Mutation Testing

Author(s): Venkateshwara Reddy Mudiyala, Henry J Nowik | University of New Haven (US)

