Volume 6, Issue 2, April 2019

International Journal of Modern Engineering and Research Technology

Website: http://www.ijmert.org

Email: editor.ijmert@gmail.com

Plasma Gasification Process: Modelling and Regression Analysis of Experimental Data

Ratan Kumar Jain

Professor Department of Mechanical Engineering ITM University Gwalior, (M.P.) [INDIA] Email: ratanjain@imuniversity.ac.in

ABSTRACT

Several nations has expressed their interest into plasma gasification as an approach to waste management. Numerous companies have developed the plasma gasification plants in order to exploit the maximize energy and recovery of slags from waste with the help of plasma gasification furnace. In this paper the research was intended to focus on the regression analysis and optimization of data in order to correlate with the experimental data obtained from the plasma gasification. The study was segregated into two different types, the first part was the regression analysis of experimental data with the help of three regression analysis data software's, Minitab, Microsoft excel, Ncss data software. And the other part was the optimization of the data. In this paper the applicability and the comparative effectiveness of regression analysis with different regression analysis data software's have been investigated. And the promising results were obtained by regression analysis which are well correlate with the Empirical data.

Keywords:— regression, Minitab, Ncss, analysis

I. INTRODUCTION

Plasma furnace technology has been used in various fields for decades and it has

accomplished on an industrial scale in many applications [1-2]. Tremendous efforts are resulting in order to solve the solid waste challenges. After practiced half of the century operationally and technically gasification plasma technology has achieved preference for disposal of solid waste. Plasma is an ionized form of gas, electrically conductive and exist in nature [2 -5]. When dc current passed in between two electrodes with the presence of working gas such as helium, argon and molecules distorted from electrons and ionizes gas obtained. It creates extremely high temperature in plasma furnace which 7000° C -10000°C [5-7]. Plasma furnace converts the carbon-based waste into svngas. synthesis gas. Syngas is combination of hydrogen and carbon mono oxide gas. After conversion the organic waste, Gas turbines converts the green fuel into electricity, slag formation, and in steam. Plasma torch can easily controlled with different temperature parameters in plasma furnace. Plasma operates on high electric furnace temperature that's makes it's more costly. Therefore it's necessary to design plasma furnace less costly and efficient for gasification system [8-9].

Plasma gasification section: plasma torch, gas fillers, heat exchangers, slag handling equipment, Feedstock [10]. As solid waste

enters into plasma chamber, extreme temperature of plasma breakdown it and reduced to a melted slag. Collection of slag at bottom is done by periodically in reactor and Melted slag can be transferred into patterns to create pavement bricks, granules, roads. And finally its turns out into syngas, after traces of pollutants, cleansing process, it can be transferred into engine [11]. Plasma gasification gas monitored with entirely different parameters feed rate, temperature, power. Figure 1 shows the demonstration of plasma gasification [12].

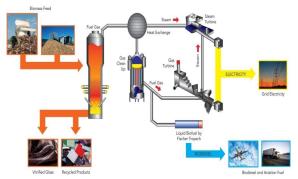


Figure 1: Demonstration of Plasma Gasification Process

II. EXPERIMENT SETUP AND DATA COLLECTION

The established plasma reactor model is a non-transferred arc Dc plasma operates in an adiabatic surroundings or in a closed chamber. This model was based on nonstoichiometric chemical symmetry. The model was only used to enhance the series of feedstock in plasma gasification, which are resulting in gas composition, progression in competence. It shows that for the production of high amount of syngas, the feedstock should be high rich in calorific value. As well as feedstock doesn't contain moisture content otherwise it will effect on process efficiency [13]. This experimental data shows the quality of disposal hazardous waste as in high quality syngas such as Rtc coal, tire, and msw. Plasma gasification is a feasible superior for retrieval of materials

from solid waste. Which helps out to design the plasma gasification plant and its potential to use different feedstock for syngas. The study shows the performance analysis in order to maximize the production of syngas with different feedstocks. Which makes it's a viable option to analysis the co-relation of independent variables with dependent variable, we put the regression analysis in order to correlate with dependent variable. Performance analysis of different feedstock with the given table in below section, table [1] it's a data for developing regression models-[14]

III. MODELLING OF PLASMA GASIFICATION PARAMETERS – REGRESSION ANALYSIS

Statistical methods likes linear regression least Sq. methods etc. Where regression analysis estimates the correlation in between variables. It helps to understand the relationship in among dependent variables and independent variables. Typically it shows that when variables change takes place with independent variable then dependent variables varies accordingly, while some of independent variables may be fix. It also correlate causal relationship with among variables. In order to obtain the most precise demonstration of physical situation, regression analysis helps to build the realistic model by analysis the experimental data. As given above table shows different Parameters, firstly we include Minitab for regression analysis accordingly;

Minitab

Firstly plywood considered as dependent variable while others are independent variables in order to correlate each independent variable value. Regression analysis estimates the probability of analysis factor in Minitab by given steps accordingly.

SNo	Syngas	RTC COAL	TIRE	MSW	ALGAE	TREATED WOOD	UNTRE- AATED WOOD	PINE NEE- DLES	PLYWOOD
1	H ₂	50.28	54.69	43.5	31.78	29.64	26.69	28.63	22.68
2	СО	40.89	34.42	34.5	30.47	38.39	36.18	37.34	36.45
3	CO ₂	0.05	0.01	0.03	0.04	0.05	0.6	0.81	0.65
4	H ₂ O	0.72	0.39	16.22	16.18	7.76	10.87	6.28	5.31
5	CH ₄	0.01	0.05	0.01	0	0	0	0	0
6	H_2S	0.2	0.28	0.09	0.1	0.03	0.02	0	0
7	N ₂	7.83	0.07	5.63	21.42	24.12	25.64	26.93	34.9
8	HCN	0	0	0	0	0.01	0	0	0
9	S	0	0	0	0	0	0	0	0
10	SO ₂	0	0	0	0	0	0	0	0
11	COS	0.01	0.01	0	0	0	0	0	0
12	NH ₃	0	0	0	0	0	0	0	0
13	C_2H_2	0	0	0	0	0	0	0	0
14	C (solid)	0	10.09	0	0	0	0	0	0
15	Syngas LHV	15.94	21.01	13.44	8.99	9.23	8.31	8.71	7.28
16	Syngas HHV	17.43	23.22	14.71	9.76	9.89	8.89	9.34	7.74
17	Feedstock flow	1	1	1	1	1	1	1	1
18	Plasma gas flow	1.31	0.74	0.36	0.74	0.78	0.85	0.89	1.38
19	Steam ratio	0.7	1	0.56	0.1	0.03	0	0	0
20	Torch power	16.65	11.71	4.06	4.95	4.84	4.84	5.07	7.84
21	Outlet temp.	1264	1270	1267	1267	1258	1260	1257	1256
22	Efficiency (%)	42.1	43	43.3	38.27	46.2	43.5	47	40.51

Table 1. Data for Developing Regression Model

	itab - Minitab	MPJ																- 0	>
ile	Edit Data	Calc Stat	Graph I	Editor Too	ols Window Help	Assistant													
	3 @ X	101	Basic Statis	tics	.00	19600F	nupm	四限一点	31	4 2 2	4. 2								
_			Regression			Line Plot		1 . IAM											
		-	ANOVA		Regre	ssion	• 📈 FRF	egression Mode	d										
Se	ssion		DOE		Nonline	near Regression	6 1 F	Regression Me	odel] 1
			Control Ch	arts	• Stabil	ty Study		odel the relation											
	Regress	ion	Quality Tor	olis	•			ntinuous predic teraction and po				ude							
	1000		Reliability/	Survival	• Ortho	gonal Regression	ie ie	sponse if needer											
	Analysis	of \	Multivariat	e	🕨 🐔 Partia	Least Squares		ace Plot											
	Source	_	Time Serie	5	Binan	Fitted Line Plot		rlaid Contour Pl	ot_										
	Regressio		Tables			Logistic Regression	hadar .	onse Optimizer											
	RTC COA	4L	Nonparam	etrics		al Logistic Regression													
	TIKE		Equivalenc	. Weather															
	MOW				LC Nomi	nal Logistic Regression													
	MSW		Power and		e ,	nal Logistic Regression													
	MSW ALGAE TREATED	0 WOOD			e ,	nal Logistic Regression on Regression	_,												
	ALGAE TREATED		Power and	Sample Siz	e Poisse		_,												
D w	ALGAE TREATED	ATED WO	Power and	Sample Siz	e Poisse	on Regression	_,											0.0	8
mw •	ALGAE TREATED	ATED WO	Power and	Sample Siz	e Poisse	on Regression	_, 	C8 5	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	1
+	ALGAE TREATED LINITREA	ATED WO	Power and	Sample Siz 0 n	e Poissi O CS	n Regression			C9	C10	C11	C12	C13	C14	C15	C16	C17	Constant Constant	
+	ALGAE TREATED INITEEA	C2	Power and 1 0D 1 C3	Sample Siz 0 0	e Poissi O CS	C6			C9	C10	C11	C12	C13	C14	C15	C16	C17	Constant Constant	
•	ALGAE TREATED HINTDEA ORIGHEET T C1 RTC COAL	C2 TIRE	Power and 1 CO 1 C3 MSW	Sample Siz 0 0 0	e Poisse C5 TREATED WOOD	C6	PINE NEEDLES	PLYWOOD	C9	C10	C11	C12	C13	C14	C15	C16	C17	Constant Constant	
+	ALGAE TREATED HINTDEA CI RTC COAL 50.28	C2 TIRE 54.69	Power and 1 00 1 C3 MSW 43.50	Sample Siz 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Poisse C5 TREATED WOOD 29.64	C6 UNTREAATED WOOD 26.69	PINE NEEDLES	PLYWOOD 22.68	C9	C10	C11	C12	C13	C14	CIS	C16	C17	Constant Constant	
+ 1 2	ALGAE TREATED INITION CI RTC COAL 50.28 40.89	C2 TIRE 54.69 34.42	Power and 1 00 1 C3 MSW 43.50 34.50	Sample Siz 0 0 1 2 4 3 1.78 30.47	e Poisse CS TREATED WOOD 29.64 38.39	C6 UNTREAATED WOOD 26.69 36.18	PINE NEEDLES 28.63 37.34	PLYWOOD 22.68 36.45	C9	C10	C11	C12	CI3	CI4	CIS	C16	C17	Constant Constant	
+ 1 2 3	ALGAE TREATED INTOEA CI RTC COAL 50.28 40.89 0.05	C2 TIRE 54.69 34.42 0.01	Power and 1 C3 MSW 43.50 34.50 0.03	Sample Siz 0 0 2 4 4 4 4 4 4 4 6 4 5 3 0.47 0.04	C5 TREATED WOOD 29.64 38.39 0.05 7.76	C6 UNTREAATED WOOD 26.69 36.18 0.60	PINE NEEDLES 28.63 37.34 0.81	PLYWOOD 22.68 36.45 0.65	C9	C10	C11	C12	C13	CI4	CIS	C16	C17	Constant Constant	
+ 1 2 3 4	ALGAE TREATED INITIOEA CI RTC COAL 50.28 40.89 0.05 0.72	C2 TIRE 54.69 34.42 0.01 0.39	Power and 1 C3 MSW 43.50 0.03 16.22	Sample Siz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Poiss Poiss CS TREATED WOOD 29.64 38.39 0.05 7.76 0.00	on Regression 2 28 0.087 C6 UNTREAATED WOOD 26.69 36.18 0.60 10.87	PINE NEEDLES 28.63 37.34 0.81 6.28	PLYWOOD 22.68 36.45 0.65 5.31	C9	C10	C11	C12	C13	C14	CIS	C16	C17	Constant Constant	
+ 1 2 3 4 5	ALGAE TREATED INITIOEA C1 RTC COAL 50.28 40.89 0.05 0.72 0.01	C2 TIRE 54.69 34.42 0.01 0.39 0.05	Power and 1 C3 MSW 43.50 34.50 0.03 16.22 0.01	Sample Siz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Poiss Poiss CS TREATED WOOD 29.64 38.39 0.05 7.76 0.00	on Regression 2 28 0 0.007 C6 UNTREAATED WOOD 26.69 36.18 0.00 10.87 0.00	PINE NEEDLES 28.63 37.34 0.81 6.28 0.00	PLYWOOD 22.68 36.45 0.65 5.31 0.00	C9	C10	C11	C12	C13	CI4	C15	C16	C17	Constant Constant	
+ 1 2 3 4 5 6	ALGAE TREATED IN/TREA C1 RTC COAL 50.28 40.89 0.05 0.72 0.01 0.20	C2 TIRE 54.69 34.42 0.01 0.39 0.05 0.28	Power and 1 C3 MSW 43.50 34.50 0.03 16.22 0.01 0.09	Sample Siz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c Poissu C Poissu TREATED WOOD 29.64 38.39 0.05 7.76 0.00 0.03 24.12	00 Regression C6 UNTREAATED WOOD 26.69 36.18 0.60 10.87 0.00 0.02	PINE NEEDLES 28.63 37.34 0.81 6.28 0.00 0.00	PLYWOOD 22.68 36.45 0.65 5.31 0.00 0.00	C9	C10	C11	C12	C13	C14	C15	C16	C17	Constant Constant	

Figure 2. Steps for Regression Analysis in Minitab

Mi	vitab - Minitab	D.MPJ															
					ols Window Help												
1	3 👲 X	06	50 0	111	A A 00	1	1 0 0 D E	1100	n [∂[Se -i M	824	E.					
-							XQ					-					
						_											
J.S	ession					_							_				
	Regress	ion Ar	alveie	DIVW	OOD versu	Reg	ression					×					
	Regress		1013515	FLIVV	OOD versu	-		2									
	Analysis	of Vari	ance			C1 C2	RTC COAL TIRE	Responses:				~	1				
	Source	or vari	DF	140.00	Adj MS F-V	C3 C4	MSW ALGAE	A.M.A.M.									
	Regressio	n	7	1490563	212938 175630	105	TREATED WOOD UNTREAATED WO	1					1				
	RTC CO		1	6	6 4	C7 C8	PINE NEEDLES PLYWOOD	Continuous predic	and the second se				1				
	TIRE		1	0	0	Ca	PLTWOOD	KIC COAL -PINE	NEEDLES			· · · · ·					
	MSW		1	24	24 19												
	ALGAE	D WOOD	1	4	4 3 0							v					
		ATED WO	00 1	0	n			Categorical predic	tors:								
111 J	arksheet 1 ***		-									^					
+	CI	C2	C3	C4	C5								C13	C14	C15	C16	CI
	RTC COAL	TIRE	MSW	ALGAE	TREATED WOOD			L				Y					
1	50.28	54.69	43.50	31.78	29.64				Model	Options	Coging	Ştepwise	1				
2	40.89	34.42	34.50	30,47	38.39	-			2000000	opuolism		Rechuser	1				-
3	0.05	0.01	0.03	0.04	0.05		Select			<u>G</u> raphs	<u>R</u> esults	Storage					
4	0.72	0.39	16.22	16.18	7.76												
5	0.01	0.05	0.01	0.00	0.00		Help				QK	Cancel					
6	0.20	0.28	0.09	0.10			UJUE	0.00	0.00								
7	7.83	0.07	5.63	21.42			25.64	26.93	34.90								
8	0.00	0.00	0.00	0.00			0.00	0.00	0.00			_					
9	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00								

Figure 3: Selection of Parameters in Minitab

As the steps take place in Minitab for regression data, it automatically generated the estimated equation by applying statistical techniques which is shown in equation form, by solving estimates equation.

Regression Equation

= 0.0170 + 0.2185 RTC Coal + 0.0460 Tire - 0.9195 MSW Plywood + 0.652 Algae + 0.752 Treated Wood + 0.501 Untreaated Wood - 0.253 Pine Needles

Table 2. Observed Value, Variance,Percentile Variance

s.no	Y predicted value	Y* experi- mental value	Variance (Y*-Y)	Percen- tile vari- ance
Y1	22.65	22.68	0.03	0.13%
Y2	36.22	36.45	0.23	0.63%
Y3	0.16	0.65	0.49	75.38%
Y4	5.51	5.31	-0.2	-3.76%
Y5	0.01	0	-0.01	-
Y6	0.08	0	-0.08	-
Y7	34.69	34.9	0.21	0.60%
Y8	0.02	0	-0.02	-
Y9	0.017	0	-0.017	-
Y10	0.017	0	-0.017	-
Y11	0.019	0	-0.019	-
Y12	0.017	0	-0.017	-
Y13	0.017	0	-0.017	-
Y14	0.48	0	-0.048	-
Y15	6.8	7.28	0.48	6.5%
Y16	7.2	7.74	0.54	6.9%
Y17	1.014	1	-0.014	-1.4%
Y18	1.15	1.38	0.23	16.6%
Y19	-0.21	0	0.21	-
Y20	8.4	7.84	-0.56	-7.14%
Y21	1254.9	1256	1.1	0.08%
Y22	40.97	40.51	-0.46	-1.13%

Mean variance - $(Y^*-Y) = 0.092$

Mean percentile variance is = 4.24%

The mean variance and % variance above calculated and predicted value approximately lies in between the mean percentile value which should not be more or less than 5%. So it's well correlate with empirical data.

Graphs plot-

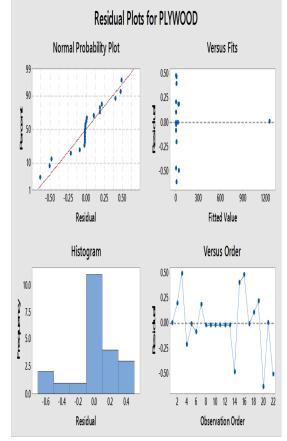


Figure 4: Graph of residual with dependent variables, observation.

Microsoft excel

Regression analysis in excel consist accordingly by choosing dependent and independent variables values to correlate each other. Further steps for regression analysis in excel as shown in figure 5.

XI 🔒 5 · C · •					New	Microsoft Excel Wo	rksheetxisx	 Excel (Product) 	t Activation Failed)						? 🗉	
FILE HOME INSERT PAGE	LAYO	UT FORM	IULAS	DATA	REVIEW	VIEW									shaown bh	owm
From Access From Web From Text Get External Data	R	efresh All - Connecti	perties Links	ns Ž↓ Ž▲Ž Ž↓ Sort	Fulter	Advanced Co	Text to Fla		Data Consolidate Validation - Data Tools	What-If Re Analysis *	ationships	Group U	Ingroup Sub	H -1	Data An Analysi	
022 • : 🗙 🗸 fa																
	1	A	В	с	D	E		F	G	н	1	J	К	L	М	
Document Recovery	1	RTC COAL 1	IRE	MSW	ALGAE	TREATED WOOD	UNTREAM	ATED WOOD	PINE NEEDLES	PLYWOOD						
Excel has recovered the following files.	2	50.28	54	69 43.5	31.78	29.64	1	26.69	28.63	22.68						
Save the ones you wish to keep.	3	40.89	34	42 34.5	30.47	38.39)	36.18	37.34	36.45						
Available Files	4	0.05	0	01 0.03	0.04	0.05	5	0.6	0.81	0.65						
	5	0.72	0.	39 16.22	16.18	3 7.76	5	10.87	6.28	5.31						
MS EXCEL 1 (version 1).xisb Version created from the L	б	0.01	0.	05 0.01) ()	0	0	0						
13-06-2018 03:55	7	0.2	0	28 0.05	0.1	0.03	3	0.02	0	0						
	8	7.83	0.	07 5.63	21.42	24.12	2	25.64	26.93	34.9						
MS EXCEL 1.xlsx [Original]	9	0		0 0) (0.01		0	0	0						
Version created last time t 13-06-2018 01:16	10	0		Data Analysis				? X	0	0						
13-00-2010 01:10	11	0		Analysis Tools					0	0						
	12	0.01	C	Histogram			^	OK	0	0						
	13	0		Moving Aver Random Nur		tion		Cancel	0	0						
	14			Rank and Pe		uvn		Help	0	0						
	15	201010	10	Regression Sampling				Ticib	0	0						
	16		21	t-Test: Paired					8.71	7.28						
	17		23			ning Equal Variances ning Unequal Varian			9.34	7.74						
	18			z-Test: Two S			۷		1	1						
	19		C					0.00	0.89	1.38						
	20			1 0.56				0	0	0						
	21		11			in the second se		4.84	5.07	7.84						
Which file do I want to save?	22			70 1267				1260	1257	1256						
Visited the do I want to save?	23	42.1		43 43.3	38.27	46.2	2	43.5	47	40.51		A	ctivate \	Vindo	ŃS.	

Figure 5: Selection of Regression in Microsoft excel	Figure 5:	Selection	of	Regression	in	Microsoft	excel
--	-----------	-----------	----	------------	----	-----------	-------

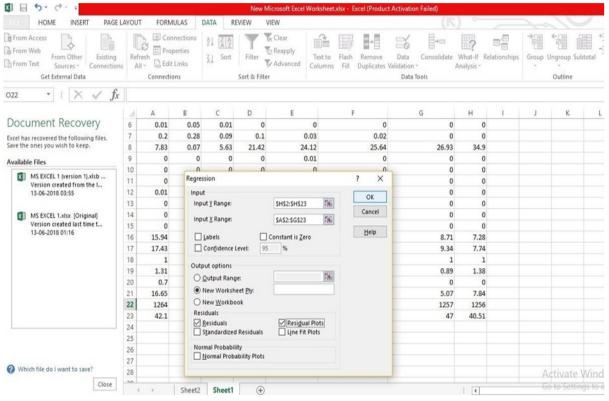


Figure 6. Selection of Parameters Variables in Excel Sheet.

In excel sheet regression analysis calculated the estimated equation statistically or periodically by choosing dependent variables. It generates the whole predicted value with residual statistically. As below table 3.

Shows the comparison in between observed value and experimental value.

s.no	Y observed	Y* experimen- tal	Variance (Y*-Y)	Percen- tile vari- ance
1	22.68	22.68	-0.001	-0.005%
2	36.25	36.45	0.19	0.52%
3	0.16	0.65	0.48	75.28%
4	5.52	5.31	-0.21	-4.06%
5	0.012	0.00	-0.01	-
6	0.08	0.00	-0.08	-
7	34.71	34.90	0.18	0.53%
8	0.02	0.00	-0.02	-
9	0.01	0.00	-0.01	-
10	0.01	0.00	-0.01	-
11	0.01	0.00	-0.01	-
12	0.01	0.00	-0.01	-
13	0.01	0.00	-0.01	-
14	0.48	0.00	-0.48	-
15	6.87	7.28	0.40	5.53%
16	7.26	7.74	0.47	6.11%
17	1.01	1.00	-0.014	-1.47%
18	1.27	1.38	0.10	7.48%
19	-0.21	0.00	0.21	-
20	8.47	7.84	-0.63	-8.08%
21	1255.99	1256	0.006	0.00%
22	41.01	40.51	-0.505	-1.24%

Table 3. Excel Regression Observed ValuesWith Dependent Variables

Mean variance is = <u>1.07</u>

Mean percentile variance = 3.18%

Therefore the observed value approx. lies in the frame of mean percentile variance which is less than 5%. It's well correlate with empirical data.

Graphs-

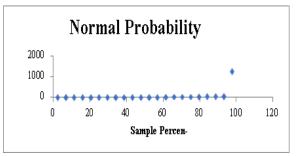


Figure 7. Normal Probability Graph with Residual

Ncss Regression Analysis

Ness is commonly known for its statistical techniques like regression modelling, linear regression analysis, multiple regression and so on. Steps take out to perform in ness regression analysis are shown in figure 8.

Multiple regression analysis in Ncss software predicts the estimated equation which well suited to the results of empirical data.

Y =

0.016957641641	2 6	96	+
0.218517227122717	*	C 1	+
0.0459556484477427	*	C 2	-
0.919454227455458 * C3			
+ 0.65178808797097	*	C4	+
0.752263695608535	*	C 5	+
0.501393234438522	*	C 6	-
0.252635489239979 * C7			

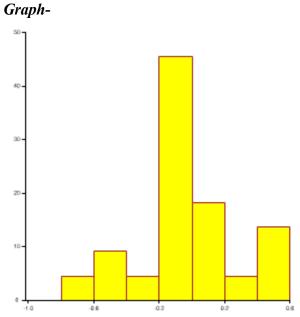
In equation variables takes place accordingly so by following the equation with predicted values proceeds.

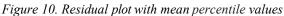
File Edit V	ew Data	analysis Graphics Tools	Window	Help								\$ Purchase	
New Open Las	Save S	ANOVA Appraisal	re ed Rows						Procedures	Favorites	S . I	aded Outp	
Column Info 🤤	I Rotate Vi	Cluster Analysis Correlation	AL.										
	1		5	6	7	8	9	10	11	12	13	14	
lame	C1	Descriptive Statistics	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C1
abel.		Design of Experiments											
Data Type	General		Genera	al General	General	General	Genera	General	General	General	General	General	Ge
ormat		Diagnostic Tests											
/alue Labels		Distribution Fitting											
/alue Order	-	Forecasting			-								
ransformation		Item Analysis	•										
lote Filter		Meta-Analysis											
4 III		Method Comparison											and the second
4		Mixed Models					1.00						
	C1	Multivariate Analysis	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C1
1	RTC COAL			TED UNTREA						10			-
2	50.28	Nondetects Data		9.64 26.6						-	-		
3	40.89	Nonparametric		8.39 36.1	18 37.34 .6 0.8			tiple Regress	ion	-		-	
4 5	0.05	Operations Research		0.05 0					16192				-
6	0.01	Proportions		Simple Linea			Mul	tiple Regress	ion - Basic			_	
7	0.2	Quality Control		Multiple Regr	-		Prir	ncipal Compo	nents Regre	ssion			
8	7.83						Nor	ndetects-Data	Regression				
9	0	Reference Intervals		Logistic Regr				sponse Surfa					
10	0	Regression		Cox Regress	ion	• *	a ne		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
11	0	Reliability	•	Count Data				ge Regressio					
12	0.01	ROC Curves	•	Method Com	parison		Rol	bust Regress	ion				
13	0	Survey Data		Nondetects-D		ion i	#" Mul	tiple Regress	ion for Appra	isal			
14	0	Survival Analysis	Abreat			ION					n		
15	0		Noninear Regression F			• 1							
16	15.94	Time Series		Survival Data		• :	Ana Ana	lysis of Covar	iance (ANCO	OVA) with Two	o Groups		
17	17.43	T-Tests		Subset Selec	tion	• 2	M One	e-Way Analysis	s of Covarian	ice (ANCOVA	4)		_
10	1	Two-Way Tables	•	Time Series			A Ger	neral Linear M	odels (GLM)	for Fixed Fa	ctors		-
		Search by Keyword										-	

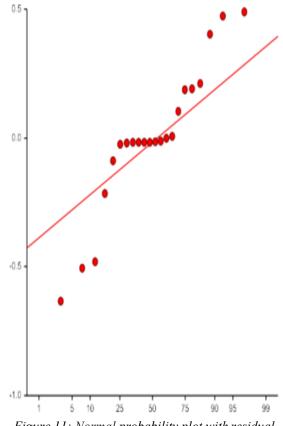
Figure 8. Ncss Selection of Multiple Regression Analysis.

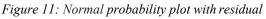
File Run	View	Analysis Graphics Tools Win	dow Help		3 Purchase
teset Open	Save As	Add Input Settings to Report		Data Procedures	Favorites Recent Loaded Output
Run		Variables, Model			Help Center
Variables, M Reports Report Option Plots Storage	Note Once the	un this procedure and generate the request and plots. e procedure is running, press F9 or click he e procedure. Weights: (Optional)Select a C	Here and/or in the Previous Box		For this procedure:
		Regression Model		(All Training Videos
		Terms: 1-Way \checkmark Preview: C2 C3 C4		List	Option Info
				U.S.	Weight Variable The weight variable contains the (non negative) weight given to each observ regression calculations. By default, ea observation receives an equal weight (where n is the sample size). This vari allows you to specify different weight different observations.
Add This Procedure Favorites		Remove Intercept	Replace Custom Model With Pre	view Model	The weight variable is commonly creat the Robust Regression procedure. Scaling NCSS automatically scales the weights they sum to one. Hence, you can ente integer numbers and NCSS will scale th appropriate fractions.

Figure 9. Selection of Dependent and Independent Variables.


Table 4. Predicted Values in ComparisonWith Actual Values, Variance.


s.n o	Y ob- served	Y* experi- mental	Variance (y*-y)	Percentile variance
1	22.681	22.68	-0.001	-0.005%
2	36.25	36.45	0.19	0.52%
3	0.16	0.65	0.48	75.28%
4	5.25	5.31	-0.21	-4.06%
5	0.012	0	-0.01	-
6	0.08	0	-0.08	-
7	34.71	34.9	0.18	0.53%
8	0.02	0	-0.024	-
9	0.01	0	-0.016	-
10	0.01	0	-0.016	-
11	0.01	0	-0.48	-
12	0.01	0	0.40	-
13	0.01	0	0.47	-
14	0.48	0	-0.01	-
15	6.87	7.28	0.10	5.53%
16	7.26	7.74	0.21	6.11%
17	1.01	1	-0.63	-1.4%
18	1.27	1.38	0.00	7.4%
19	-0.21	0	-0.50	-
20	8.4	7.84	-0.63	-8.0%
21	1255.9	1256	0.006	0.00%
22	41.01	40.51	-0.50	-1.2%


Mean variance = -0.0690


Mean percentile variation = 3.66%

Ness regression analysis values shows that its mean percentile values approximately suit with actual values which is less than 5%. So it's well correlate with empirical values.

IV. RESULTS AND DISCUSSION

Comparison in between all regression analysis software values or predicted values as shown in table 5.

s.n	Actual value (Y)*	Winnab observed varides			Micro	soft excel v	/alues	Ncss software values				
	Dependent Variable	Predicted (Y)	variance	% variance	Predicte d (Y)	variance	% variance	Predict ed (Y)	variance	% variance		
1	22.68	22.65	0.03	0.13	22.68	-0.001	-0.005	22.68	-0.001	-0.005		
2	36.45	36.22	0.23	0.61	36.45	0.19	0.52	36.25	0.19	0.52		
3	0.65	0.16	0.49	7.38	0.16	0.48	75.2	0.16	0.48	75.28		
4	5.31	5.51	-0.2	-3.76	5.52	-0.21	-4.06	5.25	-0.21	-4.06		
5	0	0.01	-0.01	-	0.012	-0.01	-	0.01	-0.01	-		
6	0	0.08	-0.08	-	0.018	-0.08	-	0.08	-0.08	-		
7	34.9	34.69	0.21	0.60	34.71	0.18	0.53	34.71	0.18	0.53		
8	0	0.02	-0.02	-	0.02	-0.02	-	0.02	-0.02	-		
9	0	0.017	-0.01	-	0.01	-0.01	-	0.01	-0.01	-		
10	0	0.017	-0.01	-	0.01	-0.01	-	0.01	-0.01	-		
11	0	0.019	-0.01	-	0.01	-0.01	-	0.01	-0.48	-		
12	0	0.017	-0.01	-	0.01	-0.01	-	0.01	0.40	-		
13	0	0.017	-0.01	-	0.01	-0.01	-	0.01	0.47	-		
14	0	0.48	-0.04	-	0.48	-0.48	-	0.48	-0.01	-		
15	7.28	6.8	0.48	6.5	6.87	0.40	5.53					
16	7.74	7.2	0.54	6.9	7.26	0.47	6.11	7.26	0.21	6.11		
17	1	1.01	-0.01	-1.4	1.01	-0.014	-1.47	1.01	-0.63	-1.4		
18	1.38	1.15	0.23	16.6	1.27	0.10	7.48	1.27	0.00	7.4		
19	0	-0.21	0.21	-	-0.21	0.21	-	-0.21	-0.50	-		
20	7.84	8.4	-0.56	-7.14	8.47	-0.63	-8.08	8.4	-0.63	-8.0		
21	1256	1254	1.1	0.08	1255	0.006	0.00	1255	0.006	0.00		
22	40.51	40.9	-0.46	-1.13	41.01	-0.505	-1.24	41.01	-0.50	-1.2		

Table 5. Comparison of All Regression Analysis Data.

Table 6. Optimization of Mean Percentile Value.

S.No	MINITAB	MICROSOFT EXCEL	NCSS
1	4.24 %	3.18 %	3.66 %
Hence, mean percentile value is less in Microsoft excel. Which is 3.18% so approx. observed values with dependent variables comes in excel which looks relevant to empirical data.			

V. CONCLUSION

On the basis of regression analysis, optimization. It concluded that predicted observation closely comes out under the Microsoft excel, which are well correlated with the empirical data of plasma gasification. Regression analysis closely shares the results obtained by excel sheet in order to know the relationship between variables accordingly.

REFERENCES:

- Thermal Plasma Solid Waste and [1] Water Treatments: A Critical Review J. -S. Chang McIARS and Department of Engineering Physics, McMaster University, Hamilton, Canada International Journal of Plasma Environmental Science and Technology, ISSN 1881-8692, Vol.3, No.2, SEPTEMBER 2009, 67-70.
- [2] Wen-Tien Tsai, Kuan-Chi Kuo, An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan, Elsevier, vol 35, issue 12, December 2010, 4842-4843
- [3] Galvita, V., V. Messerle and A. Ustimenko. 2007. Hydrogen Production by Coal Plasma Gasification for Fuel Cell Technology. International Journal of Hydrogen Energy. ISSN: 0360-3199, 32(16): 3899–3906. [6-9];
- [4] Gomez E et al. Thermal plasma technology for the treatment of wastes: a Critical review. J Hazard Mater 2009; 161(2–3):614–26.
- [5] Moustakas K et al. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 2005;123(1)

-3):120-6.

- [6] Herdrich G, Auweter-Kurtz M. inductively heated plasma sources for technical Applications. Vacuum 2006;80(11–12):1138–43
- [7] Qiu J et al. Coal gasification in steam and air medium under plasma conditions: a preliminary study. Fuel Process Technol 2004;85(8–10):969– 82
- [8] Zhao P et al. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. J Hazard Mater 2010;181(1–3):580–5.
- [9] Balgaranova J. Plasma chemical gasification of sewage sludge. Waste Manage Res 2003;21(1):38.
- [10] Kim SW, Park HS, Kim HJ. 100 kW steam plasma process for treatment of PCBs (polychlorinated biphenyls) waste. Vacuum 2003;70(1):59–66.
- [11] Lemmens B et al. Assessment of plasma gasification of high caloric waste Streams. Waste Manage (Oxford) 2007;27(11):1562–9.
- [12] G P capt (retd) and kc bhasin plasma arc gasification for waste management, 2009,pp 3-4www.EFYMG.com[10];
- [13] Mountouris A, Voutsas E, Tassios D.
 Solid waste plasma gasification: Equilibrium model development and exergy analysis. Energy Convers Manage 2006;47(13–14):1723–37.
- [14] Plasma gasification process: Modeling, simulation and comparison
- [15] Syed Shabbar Raza, Arnar Snaer Valmundsson Masdar Institute of

Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates, vol 65, January 2013, pp 801-803

* * * * *

