

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
209

AAABSTRACTBSTRACTBSTRACT

Code Idiom is a syntactic part that repeats

crosswise over projects and has a solitary

semantic reason. Expressions may have meta-

variables, for example, the body of a for loop.

Present day IDEs usually give offices to

physically characterizing expressions

furthermore, embeddings them on interest,

however this does not support software

engineers to compose informal code in

dialects or utilizing libraries with which they

are new. We present Haggis, a framework for

mining code figures of speech that expands on

later propelled systems from measurable

characteristic language handling, to be

speci f ic , nonparametric Bayesian

probabilistic tree substitution syntaxes. We

apply Haggis to a few of the most prominent

open source project from GitHub. We present

a wide scope of proof that the subsequent

figures of speech are semantically significant,

exhibiting that they do to be sure repeat

crosswise over programming projects and

that they happen all the more every now and

again in illustrative code models gathered

from a Q&A site. Manual examination of the

most widely recognized figures of speech

demonstrate that they portray significant

program ideas, including object creation,

exemption taking care of, also, asset the

executives.

Keywords:— Syntactic code patterns, Code

idioms, naturalness of source code

I. II. II. INTRODUCTIONNTRODUCTIONNTRODUCTION

Programming language content is a methods

for human correspondence. Software

engineers compose code not just to be

executed by a PC, yet in addition to convey

the exact subtleties of the code's task to later

designers who will adjust, update, test and

keep up the code. It is maybe therefore that

source code is normal in the sense depicted by

Hindle et al. [18]. Software engineers

themselves use the term colloquial to allude to

code that is written in a way that other

experienced engineers discover characteristic.

Developers accept that it is critical to

compose colloquial code, as confirm by the

sum of applicable assets accessible: For

instance, Wikibooks has a book committed to

C++ colloquialisms [52], and comparative

aides are accessible for Java [22] and

JavaScript [9, 50]. A guide on GitHub for

informal JavaScript [50] has progressively

6,644 stars and 877 forks. A quest for the

catchphrase “informal” on Stack Overflow

yields more than 49,000 hits; all be that as it

may, one of the initial 100 hits are inquiries

concerning what the colloquial strategy is for

playing out a given undertaking. The thought

of code figure of speech is one that is

normally utilized however sometimes

Website: http://www.ijmert.org Email: editor.ijmert@gmail.com

Volume 6, Issue 2, April 2019 ISSN: 2348-8565 (Online)

International Journal of Modern

Engineering and Research Technology

An Effective Mechanism for Mining of Idioms from Source Lines of An Effective Mechanism for Mining of Idioms from Source Lines of An Effective Mechanism for Mining of Idioms from Source Lines of

CodeCodeCode

Poornima A.
Professor

Department of Computer Science & Engineering,

Himalayan Gharwal University,

Pauri Garhwal, (Uttarakhand) [India]

Email: researchips13@gmail.com

G. Shabaz Mohsin
Research Scholar

Department of Computer Science & Engineering,

Himalayan Gharwal University,

Pauri Garhwal, (Uttarakhand) [India]

Email:shabaazmohisin19@gmail.com

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
210

characterized. We take the view that an

expression is a syntactic section that repeats

regularly crosswise over programming

projects and has a solitary semantic reason.

Colloquialisms may have metavariables that

conceptual over identifier names and code

squares. For instance, in Java the circle for(int

i=0; i < n ; i++) { ... } is a typical

colloquialism for repeating over a cluster. An

enormous number of model phrases, which

are all consequently distinguished by our

framework. Real IDEs right now bolster

idioms by including highlights that enable

software engineers to characterize expressions

and effectively reuse them. Shroud's

SnipMatch [43] and IntelliJ IDEA's live

layouts [23] permit the client to characterize

custom pieces of code that can be embedded

on interest. NetBeans incorporates a

comparable “Code Templates” highlight in its

proofreader. As of late, Microsoft made Bing

Code Search [36] that enables clients to look

and add bits to their code, by recovering code

from famous coding sites, for example, Stack

Overflow. The reality that all significant IDEs

incorporate highlights that enable software

engineers to physically characterize and use

phrases authenticates their significance. We

are unconscious, notwithstanding, of

techniques for naturally recognizing code

phrases. This is a noteworthy hole in tooling

for programming improvement. This is

particularly an obstruction for less

experienced software engineers who don't

know which figures of speech they ought to

utilize. Without a doubt, as we show later,

numerous figures of speech are library-

explicit, so even an accomplished developer

will not be acquainted with the code phrases

for a library that is new to them. In this paper,

we present the principal technique for

naturally mining code idioms from a current

corpus of informal code. At to start with, this

may appear to be a straightforward

recommendation: just quest for subtrees that

happen frequently in a grammatically parsed

corpus. How-ever ever, this gullible technique

does not function admirably, for the

straightforward reason that regular trees are

not really intriguing trees. To return to our

past model, for circles happen more ordinarily

than for(int i=0;i<n;i++) {...}, yet one would

be hard squeezed to contend that for(...) {...}

all alone (that is, without any articulations or

on the other hand body) is a fascinating

example. Rather, we depend on a different

guideline: fascinating examples are those that

help to clarify the code that developers

compose. As a proportion of "explanation

quality", we utilize a probabilistic model of

the source code, and hold those sayings that

make the preparation corpus almost certain

under the model. These thoughts can be

formalized in a solitary, hypothetically

principled system utilizing a nonparametric

Bayesian investigation. Nonparametric

Bayesian techniques have progressed toward

becoming massively prevalent in insights, AI,

and common language handling since they

give an adaptable and principled way of

naturally instigating a "sweet spot" of model

unpredictability based on the measure of

information that is accessible [41, 16, 48].

Specifically, We utilize a nonparametric

Bayesian tree substitution punctuation, which

has as of late been created for common

language [10, 42], in any case, which has not

been connected to source code. Our

contributions in our research work is:-

 We introduce the idiom mining

problem

 We presented HAGGIS a mechanism

for automatically mining code idioms

based on non-parametric Bayesian

tree substitution grammars

 We demonstrate the HAGGIS

successfully identifies cross-project

idioms.

 Determining the idioms that

HAGGIC identifies important

program concepts including object

creation, exception handling and

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
211

resource management.

We submitted a small collection of Idioms

from HAGGIS to Eclipse Snip match project

into its library of snippets.

II. MII. MII. MININGININGINING CCCODEODEODE IIIDIOMSDIOMSDIOMS

In this area, we present the specialized

system that is required for Haggis, 3 our

proposed technique for the expression

mining issue. At an abnormal state, we

approach the issue of mining source code

figures of speech as that of gathering of

normally reoccurring pieces in ASTs. We

apply later propelled methods from

measurable NLP [10, 42], however we have

to clarify them in some detail to legitimize

why they are fitting for this product

building undertaking, and why more

straightforward strategies would not be

effective. We will develop well ordered. To

begin with, we will depict our portrayal of

sayings. Specifically, we depict a group of

likelihood conveyances over ASTs which

are called probabilistic tree substitution

sentence structures (pTSGs). A pTSG is

basically a probabilistic setting free

sentence structure (PCFG) with the

expansion of exceptional principles that

embed a tree section at the same time.

Second, we portray how we find

colloquialisms. We do this by learning a

pTSG that best clarifies a huge amount of

existing source code. We consider as

figures of speech the tree parts that show

up in the educated pTSG. We gain

proficiency with the pTSG utilizing a

ground-breaking general structure called

nonparametric Bayesian strategies.

Nonparametric Bayes gives a principled

hypothetical structure to naturally

gathering how complex a model ought to

be from information. Each time we add

another part principle to the pTSG, we are

including another parameter to the model

(the standard's likelihood of showing up),

and the number of potential pieces that we

could include is limitless. This makes a

Holistic, Automatic Gathering of

Grammatical Idioms from Software.hazard

that by including a huge number a parts we

could develop a model with an excessive

number of parameters, which would

probably overfi t the preparation

information. Nonparametric Bayesian

techniques give a way to trade the model's

fit to the preparation set with the model's

size at the point when the greatest size of

the model is unbounded. It is likewise

worth clarifying why we utilize

probabilistic models here, as opposed to a

standard deterministic CFG. Probabilities

give a characteristic quantitative proportion

of the nature of a proposed maxim: A

proposed maxim is advantageous just if,

when we incorporate it into a pTSG, it

builds the likelihood that the pTSG allots

to the preparing corpus. This urges the

technique to abstain from recognizing

phrases that are visit yet exhausting. At

first, it might appear to be odd that we

apply punctuation learning strategies here,

when obviously the sentence structure of

the programming language is definitely

known. We explain that our point isn't to re

-gain proficiency with the known

punctuation, yet rather to learn likelihood

dispersions over parse trees from the

known punctuation. These appropriations

will speak to which standards from the

punctuation are utilized all the more

regularly, and, urgently, which sets of

guidelines will in general be utilized

adjacently.

III. CIII. CIII. CODEODEODE SSSNIPPETNIPPETNIPPET EEEVALUATIONVALUATIONVALUATION

We exploit the ubiquity of idioms in source

code to assess Haggis on well known open

source projects. We confine ourselves to

the Java programming language, because of

the high accessibility of apparatuses and

source code. We stress, in any case, that

Haggis is language skeptic. Before we

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
212

begin, an intriguing method to get an

instinctive feel for any probabilistic model

is basically to draw tests from it. One can

see that the pTSG is learning to create

informal and linguistically right code, in

spite of the fact that—as expected — the

code is semantically conflicting.

3.1 Methodology

We utilize two assessment informational

collections involved Java open-source code

accessible on GitHub. The Projects

informational collection (Figure 1) contains

the best 13 Java GitHub ventures whose

archive is in any event 100MB in size as

indicated by the GitHub Archive [17]. To

decide fame, we processed the z-score of

forks and watchers for each undertaking.

The standardized scores were then found

the middle value of to recover each task's

notoriety positioning. The subsequent

assessment informational index, Library

(Figure 2), comprises of Java classes that

import (for example use) 15 famous Java

libraries. For each chosen library, we

recovered from the Java GitHub Corpus [2]

all documents that import that library yet

don't actualize it. We split the two

informational indexes into a train what's

more, a test set, part each venture in

Projects and every library document set in

Library into a train (70%) and a test (30%)

set. The Projects will be utilized to mine

undertaking explicit idioms, while the

Library will be utilized to mine sayings

that happen crosswise over libraries. To

extricate idioms we run MCMC for 100

cycles for each of the activities in Projects

and every one of the library record sets in

Library, utilizing the initial 75 cycles as

consume in.

A threat to the legitimacy of the assessment

utilizing the previously mentioned

informational indexes is the likelihood that

the informational indexes are most

certainly not agent of Java advancement

works on, containing exclusively open-

source projects from GitHub. Be that as it

may, the chose informational collections

range a wide assortment of areas, including

databases , in forming f rameworks

furthermore, code parsers, decreasing any

such probability. Moreover, we play out an

extraneous assessment on source code

found on a famous online Q&A site, Stack

Overflow.

3.2 Evaluation Metrics

We figure two metrics on the test corpus.

These metrics look like accuracy and

review in data recovery in any case, are

changed in accordance with the code figure

of speech space. We characterize

colloquialism inclusion as the percent of

source code AST hubs that matches any of

the mined idioms. Inclusion is

consequently a number somewhere in the

range of 0 and 1 showing the degree to

which the mined idioms exist in a bit of

code. We characterize maxim set accuracy

as the level of the mined phrases that

likewise show up in the test corpus.

Utilizing these two measurements, we tune

the fixation parameter of the DPpTSG

model by utilizing android.

Figure 1 : Projects data set used for in-project idiom

evaluation. Projects in alphabetical order.

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
213

Figure 2: Library data set for cross-project idiom

evaluation. Each API file set contains all class files

that import a class belonging to the respective package

or one of its sub-packages.

3.3 Extrinsic Evaluation of Mined Idioms

In this section we need to evaluate a

HAGGIS framework extrinsically on the

dataset of stack overflow questions [4].

Stack Overflow is a prominent Q&A site

for programming-related inquiries. The

inquiries and answers regularly contain

code bits, which are illustrative of general

improvement practice and are generally

short, compact and colloquial, containing

just basic bits of code. Our theory is that

bits from Stack Overflow are more

colloquial than run of the mill code, so if

Haggis figures of speech are important,

they will happen all the more generally in

code scraps from Stack Overflow than in

ordinary code. To test this, we first

concentrate all code pieces in inquiries and

answers labeled as java or android, sifting

just those that can be parsed by Eclipse

JDT [12]. We further evacuate pieces that

contain under 5 tokens. After this

procedure, we have 108,407 fractional Java

bits. At that point, we make a solitary

arrangement of sayings, combining every

one of those found in Library and

evacuating any sayings that have been seen

in under five documents in the Library test

set. We end up with little however high

accuracy set of idioms over all APIs in

Library. This demonstrates the mined

sayings are progressively visit in Stack

Overflow than in an “arbitrary”

arrangement of undertakings. Since we

anticipate that Stack Overflow scraps are

more profoundly informal than normal

undertakings' source code, this gives solid

sign that Haggis has mined a lot of

significant figures of speech. We note that

exactness depends profoundly on the fame

of Library's libraries. For instance, on the

grounds that Android is a standout amongst

the most famous subjects in Stack

Overflow, when we limit the mined figures

of speech to those found in the two

Android libraries, Haggis accomplishes an

accuracy of 96.6% at an inclusion of 21%

in Stack Overflow. This shows Haggis

sayings are broadly utilized being

developed practice.

3.3.1 Eclipse Snip match

To further assess Haggis, we presented a

set of expressions to Eclipse Snip match

[43]. Snip match as of now contains around

100 human-made code bits. As of now just

JRE, SWT also, Eclipse explicit pieces are

being acknowledged. Upon discourse with

the network, we mined a lot of sayings

explicitly for SWT, JRE and Eclipse. A

portion of the Haggis mined sayings

previously existed in Snip match. Of the

rest of the colloquialisms, we physically

interpreted 27 sayings into JFace formats,

included a depiction and submitted them

for thought. Five of these were converged

as may be, four were rejected as a result of

unsupported highlights/l ibraries in

Snipmatch (yet may be included the

future), one was disposed of as a terrible

practice that in any case showed up

frequently in our information, and one

additional was disposed of since it

previously existed in Snipmatch. At last,

another piece was rejected to permit

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
214

Snipmatch "to keep the pieces adjusted,

i.e., spread more APIs similarly well". The

staying fifteen were still under thought at

the season of composing. This gives casual

proof that Haggis, mines valuable idioms

that different engineers find valuable. By

and by, this experience likewise features

that, as with any information driven

strategy, the figures of speech mined will

likewise mirror any old or deprecated

coding practices in data.

IV. CIV. CIV. CONCLUSIONONCLUSIONONCLUSION

We exhibited Haggis, a framework for

consequently mining high caliber code

idioms. The phrases found incorporate task,

API, furthermore, language explicit

phrases. One intriguing course for future

work is the subject of why code idioms

emerge and their effect on the

programming building process. It might be

that there are “great” and “terrible” idioms.

“Great” figures of speech could emerge as

an extra reflection over programming

dialects helping designers impart all the

more unmistakably their expectation.

“Terrible” phrases may make up for

inadequacies of a programming language or

an API. For instance, the “multi-get”

proclamation in Java 7 [40] was intended to

evacuate the requirement for a maxim that

comprised of a succession of catch

proclamations with indistinguishable

bodies. In any case, it might be contended

that other idioms, for example, the

pervasive for(int i=0;i<n;i++) help code

understanding. A formal report about the

contrasts between these kinds of phrases

could be of incredible intrigue.

REFERENCES:

[1] M. Acharya, T. Xie, J. Pei, and J. Xu.

Mining API pattern as partial orders

from source code: from usage

scenarios to specifications. In Joint

Meeting of the European Software

Engineering Conference and the

ACM SIGSOFT Symposium on the

Foundations of Software Engineering

(ESEC/FSE), pages 25–34. ACM,

2007.

[2] M. Allamanis and C. Sutton. Mining

source code repositories at massive

scale using language modeling. In

Working Conference on Mining

Software Repositories (MSR), 2013.

[3] M. Allamanis, E. T. Barr, C. Bird,

and C. Sutton. Learning natural

coding conventions. In Symposium

on the Foundations of Software

Engineering (FSE), 2014.

[4] A. Bacchelli. Mining challenge 2013:

StackOverflow. In Working

Conference on Mining Software

Repositories (MSR),2013.

[5] B. S. Baker. A program for

identifying duplicated code.

Computing Science and Statistics,

pages 49–49, 1993.

[6] H. A. Basit and S. Jarzabek. A data

mining approach for detecting higher-

level clones in software. IEEE

T r a n s a c t i o n s o n S o f t w a r e

Engineering, 35(4):497–514, 2009.

[7] I. D. Baxter, A. Yahin, L. Moura, M.

Sant’Anna, and L. Bier. Clone

detection using abstract syntax trees.

In International Conference on

Software Maintenance, pages 368–

377. IEEE, 1998.

[8] J. Campbell, A. Hindle, and J. N.

Amaral. Syntax errors just aren’t

natural: Improving error reporting

with language models. In Working

Conference on Mining Software

Repositories (MSR), 2014.

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
215

[9] S. Chuan. JavaScript Patterns

Collection. http://shichuan.github.io/

javascript-patterns/, 2014. Visited

Feb 2014.

[10] T. Cohn, P. Blunsom, and S.

Goldwater. Inducing tree substitution

grammars. Journal of Machine

Learning Research, 11:3053–3096,

Nov 2010.

[11] R. Cottrell, R. J. Walker, and J.

Denzinger. Semi-automating small-

scale source code reuse via structural

correspondence. In Symposium on

Foundations of Software Engineering

(FSE), pages 214–225. ACM, 2008.

[12] Eclipse-Contributors. Eclipse JDT.

eclipse.org/jdt, 2014. Visited Mar

2014.

[13] R. Falke, P. Frenzel, and R. Koschke.

Empirical evaluation of clone

detection using syntax su_x trees.

Empirical Software Engineering, 13

(6):601–643, 2008.

[14] M. Gabel and Z. Su. A study of the

uniqueness of source code.In

Symposium on Foundations of

Software Engineering (FSE),pages

147–156. ACM, 2010.

[15] A. Gelman, J. B. Carlin, H. S. Stern,

D. B. Dunson, A. Vehtari, and D. B.

Rubin. Bayesian data analysis. CRC

Press, 2013.

[16] S. J. Gershman and D. M. Blei. A

tutorial on Bayesian nonparametric

models. Journal of Mathematical

Psychology, 56 (1):1–12, 2012.

[17] I. Grigorik. GitHub Archive.

www.githubarchive.or, 2014. Visited

Mar 2014.

[18] A. Hindle, E. T. Barr, Z. Su, M.

Gabel, and P. Devanbu. On the

naturalness of software. In

International Conference on Software

Engineering (ICSE), 2012.

[19] N . L . H j o r t . B a y e s i a n

Nonparametrics. Number 28.

Cambridge University Press, 2010.

[20] R. Holmes, R. J. Walker, and G. C.

Murphy. Approximate structural

context matching: An approach to

recommend relevant examples. IEEE

T r a n s a c t i o n s o n S o f t w a r e

Engineering, 32(12):952–970, 2006.

[21] F. Jacob and R. Tairas. Code template

inference using language models. In

Annual Southeast Regional

Conference, page 104. ACM, 2010.

[22] Java Idioms Editors. Java Idioms.

http://c2.com/ppr/wiki/JavaIdioms/

JavaIdioms.html, 2014. Visited

Feb2014.

[23] JetBrains. High-speed coding with

Custom Live Templates.bit .

ly/1o8R8Do, 2014. Visited Mar 2014.

[24] L. Jiang, G. Misherghi, Z. Su, and S.

Glondu. Deckard: Scalable and

accurate tree-based detection of code

clones. In International Conference

on Software Engineering (ICSE),

pages 96–105. IEEE Computer

Society, 2007.

[25] A. Jiménez, F. Berzal, and J.-C.

Cubero. Frequent tree pattern mining:

A survey. Intelligent Data Analysis,

14(6):603–622,01 2010.

[26] T. Kamiya, S. Kusumoto, and K.

Inoue. CCFinder: a multi-linguistic

token-based code clone detection

system for large scale source code.

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
216

IEEE Transactions on Software

Engineering, 28 (7):654–670, 2002.

[27] C. J. Kapser and M.W. Godfrey.

“Cloning considered harmful”

considered harmful: patterns of

cloning in software. Empirical

Software Engineering, 13(6):645–

692, 2008.

[28] M. Kim, V. Sazawal, D. Notkin, and

G. Murphy. An empirical study of

code clone genealogies. In ACM

SIGSOFT Software Engineering

Notes, volume 30, pages 187–196.

ACM, 2005.

[29] K. A. Kontogiannis, R. DeMori, E.

Merlo, M. Galler, and M. Bernstein.

Pattern matching for clone and

concept detection. In Reverse

Engineering, pages 77–108. Springer,

1996.

[30] R. Koschke, R. Falke, and P. Frenzel.

Clone detection using abstract syntax

su_x trees. In Working Conference on

Reverse Engineering (WCRE), pages

253–262. IEEE, 2006.

[31] I. Kuzborskij. Large-scale pattern

mining of computer program source

code. Master’s thesis, University of

Edinburgh, 2011.

[32] Z. Li, S. Lu, S. Myagmar, and Y.

Zhou. CP-Miner: Finding copy-paste

and related bugs in large-scale

software code. IEEE Transactions on

Software Engineering, 32(3):176–

192, 2006.

[33] P. Liang, M. I. Jordan, and D. Klein.

Type-based MCMC. In Human

Language Technologies: Annual

Conference of the North American

Chapter of the Association for

Computational Linguistics (HLT/

NAACL), pages 573–581, 2010.

[34] C. J. Maddison and D. Tarlow.

Structured generative models of

natural source code. arXiv preprint

arXiv:1401.0514, 2014.

[35] A. Menon, O. Tamuz, S. Gulwani, B.

Lampson, and A. Kalai.A machine

learning framework for programming

by example. In International

Conference on Machine Learning

(ICML), pages 187–195, 2013.

[36] Microsoft Research. High-speed

coding with CustomLiveTemplates.

research.microsoft.com/apps/video/

dl.aspx?id=208961, 2014. Visited

Mar 2014.

[37] K. P. Murphy. Machine Learning: A

Probabilistic Perspective. MIT Press,

2012.

[38] T. T. Nguyen, H. A. Nguyen, N. H.

Pham, J. M. Al-Kofahi, and T. N.

Nguyen. Graph-based mining of

multiple object usage patterns. In

Joint Meeting of the European

Software Engineering Conference

and the ACM SIGSOFT Symposium

on the Foundations of Software

Engineering (ESEC/FSE), pages 383–

392. ACM, 2009.

[39] T. T. Nguyen, A. T. Nguyen, H. A.

Nguyen, and T. N. Nguyen. A

statistical semantic language model

for source code. In Joint Meeting of

the European Software Engineering

Conference and the ACM SIGSOFT

Symposium on the Foundations of

Software Engineering (ESEC/FSE),

2013.

[40] Oracle. Java SE Documentation:

Catching Multiple Exception Types

and Rethrowing Exceptions with

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

International Journal of Modern Engineering and Research Technology

Volume 6 | Issue 2 | April 2019
217

Improved Type Checking http://

docs.oracle.com/javase/7/docs/

technotes/guides/language/catch-

multiple.html, 2014. Visited Feb

2014.

[41] P. Orbanz and Y. W. Teh. Bayesian

n o n p a r am e t r i c m o d e l s . In

Encyclopedia of Machine Learning.

Springer, 2010.

[42] M. Post and D. Gildea. Bayesian

learning of a tree substitution

grammar. In Proceedings of the

Association for Computational

Linguistics (ACL), pages 45–48,

2009.

[43] E. Recommenders-Contributors.

Eclipse SnipMatch.wiki.eclipse.org/

Recommenders/Snipmatch, 2014.

Visited Mar 2014.

[44] C. K. Roy and J. R. Cordy. A survey

on software clone detection research.

Technical report, Queen’s University

at Kingston, Ontario, 2007.

[45] C. K. Roy, J. R. Cordy, and R.

Koschke. Comparison and evaluation

of code clone detection techniques

and tools: A qualitative approach.

Science of Computer Programming,

74 (7):470–495, 2009.

[46] J. Sethuraman. A constructive

definition of Dirichlet priors.

Technical report, DTIC Document,

1991.

[47] Y. W. Teh. A hierarchical Bayesian

language model based on Pitman-Yor

processes. In Annual Meeting of the

Association for Computational

Linguistics (ACL), pages 985–992,

2006.

[48] Y.W. Teh and M. I. Jordan.

Hierarchical Bayesian nonparametric

models with applications. In N. Hjort,

C. Holmes, P. Müller, and S. Walker,

editors, Bayesian Nonparametrics:

Principles and Practice. Cambridge

University Press, 2010.

[49] A. Termier, M.-C. Rousset, and M.

Sebag. Treefinder: a first step towards

XML data mining. In International

Conference on Data Mining (ICDM),

pages 450–457. IEEE, 2002.

[50] R. Waldron. Principles of Writing

Consistent, Idiomatic JavaScript.

h t t p s : / / g i t h u b . c o m / r w a l d r o n /

idiomatic.js/, 2014.Visited Feb 2014.

An Effective Mechanism for Mining of Idioms from Source Lines of Code

Author(s): G. Shabaz Mohsin, Poornima A | Pauri Garhwal

* * * * *

